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Abstract
The game of prisoner dilemma is analysed to study the role of measurement
basis in quantum games. Four different types of payoffs for quantum games are
identified on the basis of different combinations of initial state and measurement
basis. A relation among these different payoffs is established.

PACS numbers: 03.67.−a, 03.65.Ud, 02.50.Le, 03.65.Ta

1. Introduction

Game theory deals with a situation in which two or more parties compete to maximize their
respective payoffs by playing suitable strategies according to the known payoff matrix. Its
extension to the quantum domain made it more interesting where the quantum strategies have
shown a clear advantage over classical strategies [1–3, 5]. For further reading on classical and
quantum game theory see [6, 7].

In the quantum version of the game, an arbiter prepares an initial quantum state and passes
it on to the players. After applying their local operators (or strategies), the players return the
state to the arbiter who then announces the payoffs by performing a measurement with the
application of suitable payoff operators depending on the payoff matrix of the game. The role of
the initial quantum state remained an interesting issue in quantum games [2–5]. However, the
importance of the payoff operators used by the arbiter to perform measurement to determine
the payoffs of the players remained mostly unnoticed. In our earlier paper [8], we have
pointed out the importance of measurement basis in quantum games. It was shown that if the
arbiter is allowed to perform the measurement on an entangled basis, interesting situations
could arise which were not possible in the framework of Eisert et al [2] and Marinatto and
Weber [3] schemes. In this paper, we further extend our earlier work to investigate the role of
measurement basis in quantum games by taking the prisoner dilemma as an example. Quantum
payoffs are divided into four different categories on the basis of initial state and measurement
basis. These different situations arise due to the possibility of having product or entangled
initial state and then applying product or entangled basis for the measurement [9, 10]. In the
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context of our generalized framework for quantum games (see [8]), the four different types of
payoffs are

(i) $PP is the payoff when the initial quantum state is of the product form, and product basis
is used for measurement to determine the payoff.

(ii) $PE is the payoff when the initial quantum state is of the product form, and entangled
basis is used for measurement to determine the payoff.

(iii) $EP is the payoff when the initial quantum state is entangled, and product basis is used
for measurement to determine the payoff.

(iv) $EE is the payoff when the initial quantum state is entangled, and entangled basis is used
for measurement to determine the payoff.

Our results show that these payoffs obey a relation, $PP < $PE = $EP < $EE at the Nash
equilibrium (NE). It is interesting to note that this relation is very similar to an existing relation
for the classical capacities of the quantum channels. It is shown in [11] that for a quantum
channel the capability to transmit maximum classical information, called the classical channel
capacity C of a quantum channel, a relation of the form CPP < CPE = CEP < CEE holds. In
this paper, we have not tried to investigate the possible relationship between channel capacity
and payoffs.

2. Prisoner dilemma

In the game of prisoner dilemma, two prisoners are being interrogated in separate cells for
a crime they have committed together. The two possible moves for these prisoners are to
cooperate (C) or to defect (D). They are not allowed to communicate but have access to the
following payoff matrix:

Alice
C

D

Bob

C D[
(3, 3) (0, 5)

(5, 0) (1, 1)

]
. (1)

It can be seen from equation (1) that D is the dominant strategy for the two players.
Therefore, rational reasoning forces each player to play D causing (D,D) as the Nash
equilibrium of the game with payoffs (1, 1), i.e., 1 for both. The players could have got
higher payoffs had both of them decided to play C instead of D. This is the dilemma in this
game [12]. Eisert et al [2] analysed this game in the quantum domain and showed that there
exists a suitable quantum strategy for which the dilemma is resolved. They also pointed out a
quantum strategy which always wins over all classical strategies.

In our generalized version of quantum games, the arbiter prepares the initial state of the
form [8],

|ψin〉 = cos
γ

2
|CC〉 + i sin

γ

2
|DD〉. (2)

Here |C〉 and |D〉 represent vectors in the strategy space corresponding to cooperate and defect,
respectively, with γ ∈ [0, π ]. The strategy of each of the players can be represented by the
unitary operator Ui of the form

Ui = cos
θi

2
Ri + sin

θi

2
Pi, (3)

where i = 1 or 2 and Ri, Pi are the unitary operators:

Ri |C〉 = eiφi |C〉, Ri |D〉 = e−iφi |D〉,
Pi |C〉 = −|D〉, Pi |D〉 = |C〉. (4)
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Here we restrict our treatment to a two parameter set of strategies (θi, φi) for mathematical
simplicity in accordance with [2]. After application of the strategies, the initial state given by
equation (2) transforms to

|ψf 〉 = (U1 ⊗ U2)|ψin〉, (5)

and using equations (4) and (5) the above expression becomes

|ψf 〉 = cos(γ /2)[cos(θ1/2) cos(θ2/2) ei(φ1+φ2)|CC〉 − cos(θ1/2) sin(θ2/2) eiφ1 |CD〉
− cos(θ2/2) sin(θ1/2) eiφ2 |DC〉 + sin(θ1/2) sin(θ2/2)|DD〉] + i sin(γ /2)

× [cos(θ1/2) cos(θ2/2) e−i(φ1+φ2)|DD〉 + cos(θ1/2) sin(θ2/2) e−iφ1 |DC〉
+ cos(θ2/2) sin(θ1/2) e−iφ2 |CD〉 + sin(θ1/2) sin(θ2/2)|CC〉]. (6)

The operators used by the arbiter to determine the payoff for Alice and Bob are

PA = 3PCC + PDD + 5PDC, PB = 3PCC + PDD + 5PCD, (7)

where

PCC = |ψCC〉〈ψCC |, |ψCC〉 = cos(δ/2)|CC〉 + i sin(δ/2)|DD〉, (8a)

PDD = |ψDD〉〈ψDD|, |ψDD〉 = cos(δ/2)|DD〉 + i sin(δ/2)|CC〉, (8b)
PDC = |ψDC〉〈ψDC |, |ψDC〉 = cos(δ/2)|DC〉 − i sin(δ/2)|CD〉, (8c)
PCD = |ψCD〉〈ψCD|, |ψCD〉 = cos(δ/2)|CD〉 − i sin(δ/2)|DC〉, (8d)

with δ ∈ [0, π ]. Above payoff operators reduce to that of Eisert’s scheme for δ equal to γ ,
which represents the entanglement of the initial state [2]. And for δ = 0, above operators
transform into that of Marinatto and Weber’s scheme [3]. Corresponding payoffs for the
players, A and B, are

$A(θ1, φ1, θ2, φ2) = Tr(PAρf ), $B(θ1, φ1, θ2, φ2) = Tr(PBρf ), (9)

where ρf = |ψf 〉〈ψf | is the density matrix for the quantum state given by (6) and Tr represents
the trace of a matrix. Using equations (6), (8) and (9), we get the following payoffs:

$A(θi, φj ) = sin2(θ1/2) sin2(θ2/2)

[
cos2

(
γ + δ

2

)
+ 3 sin2

(
γ − δ

2

)]

+ cos2(θ1/2) cos2(θ2/2)[2 + cos γ cos δ + 2 cos(2δ(φ1 + φ2)) sin γ sin δ]

− sin θ1 sin θ2 sin(φ1 + φ2)[sin γ − sin δ] +
5

4
[1 − cos θ1 cos θ2]

+
5

4
(cos θ2 − cos θ1)[cos γ cos δ + cos(2φ1) sin γ sin δ]. (10)

The payoff of player B can be found by interchanging θ1 ←→ θ2 and φ1 ←→ φ2 in
equation (10). There can be four types of payoffs for each player for different combinations
of δ and γ . In the following, $PP(θ1, θ2) means payoffs of the players when the initial state
of the game is product state and payoff operator used by the arbiter for measurement is also
in the product form (γ = 0, δ = 0), and $EP (θ1, θ2, φ1, φ2) means the payoffs for entangled
input state when the payoff operator used for measurement is in the product form, i.e.,
(γ �= 0, δ = 0). Similarly, $PE(θ1, θ2, φ1, φ2) and $EE(θ1, θ2, φ1, φ2) can also be interpreted.
Therefore, for different values of δ and γ , the following four cases can be identified:

Case (a). When δ = γ = 0, equation (10), becomes

$A
PP(θ1, θ2) = 3 cos2(θ1/2) cos2(θ2/2) + sin2(θ1/2) sin2(θ2/2) + 5 sin2(θ1/2) cos2(θ2/2).

(11)
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This situation corresponds to the classical game where each player plays, C, with probability
cos2(θi/2) with i = 1, 2 [13]. The Nash equilibrium corresponds to θ1 = θ2 = π , i.e., (D,D)

with payoffs for both the players as

$A
PP(θ1 = π, θ2 = π) = $B

PP(θ1 = π, θ2 = π) = 1. (12)

Case (b). When γ = 0, δ �= 0, in equation (10), then the game has two Nash equilibria one
at θ1 = θ2 = 0 when sin2(δ/2) � 2

3 and the other at θ1 = θ2 = π when sin2(δ/2) � 1
3 . The

corresponding payoffs for these Nash equilibria are

$A
PE(θ1 = 0, θ2 = 0) = $B

PE(θ1 = 0, θ2 = 0) = 3 − 2 sin2(δ/2),

$A
PE(θ1 = π, θ2 = π) = $B

PE(θ1 = π, θ2 = π) = 1 + 2 sin2(δ/2).
(13)

Here in this case at NE, the payoffs are independent of φ1, φ2. It is clear that the above payoffs
for all the allowed values of δ remain less than 3, which is the optimal payoff for the two
players if they cooperate.

Case (c). For γ �= 0, and δ = 0, equation (10) again gives two Nash equilibria one at
θ1 = θ2 = 0 when sin2(γ /2) � 2

3 and the other at θ1 = θ2 = π when sin2(γ /2) � 1
3 . The

corresponding payoffs are

$A
EP (θ1 = 0, θ2 = 0) = $B

EP (θ1 = 0, θ2 = 0) = 3 − 2 sin2(γ /2),

$A
EP (θ1 = π, θ2 = π) = $B

EP (θ1 = π, θ2 = π) = 1 + 2 sin2(γ /2).
(14)

It can be seen that the payoffs at both Nash equilibrium for allowed values of sin2 γ

2 remain
less than 3. From equations (13) and (14), it is also clear that $A

EP (0, 0) = $A
PE(π, π) only

for δ = γ .

Case (d). When γ = δ = π/2, equation (10) becomes

$A
EE(θ1, θ2, φ1, φ2) = 3[cos(θ1/2) cos(θ2/2) cos(φ1 + φ2)]

2

+ [sin(θ1/2) sin(θ2/2) + cos(θ1/2) cos(θ2/2) sin(φ1 + φ2)]
2

+ 5

[
sin(θ1/2) cos

θ2

2
cos φ2 − cos(θ1/2) sin(θ2/2) sin φ1

]2

. (15)

This payoff is same as found by Eisert et al [2], and θ1 = θ2 = 0, φ1 = φ2 = π
2 is the Nash

equilibrium [2] of the game that gives the payoffs for both players as

$A
EE

(
0, 0,

π

2
,
π

2

)
= $B

EE

(
0, 0,

π

2
,
π

2

)
= 3. (16)

Comparing equations (12)–(14) and (16), it is evident that

$l
EE

(
0, 0,

π

2
,
π

2

)
>

(
$l

PE(θ1 = k, θ2 = k), $l
EP (θ1 = k, θ2 = k)

)
> $l

PP(θ1 = π, θ2 = π)

(17)

and

$l
PE(θ1 = k, θ2 = k) = $l

EP (θ1 = k, θ2 = k) for γ = δ (18)

with k = 0, π and l = A,B. This expression shows the crucial role of entanglement in
quantum games as it can be seen that the combination of initial entangled state with entangled
payoff operators gives higher payoffs as compared to all other combinations of γ and δ.
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3. Conclusion

In quantum games, the arbiter (the referee) prepares an initial quantum state and passes it on
to the players. After applying their local operators (their strategies) the players return their
state to the arbiter. The arbiter then performs a measurement on the final state by applying
the payoff operators to determine the payoffs of the player on the basis of the payoff matrix
of the game. In our earlier paper [8], we pointed out the importance of measurement in the
quantum games. Here we extended our earlier work, by taking the Prisoner dilemma game as
an example and showed that depending on the initial states and type of measurement (product
or entangled), quantum payoffs in games can be categorized into four different types. These
four categories are $PP, $PE, $EP and $EE , where P and E are abbreviations for the product
and entanglement at input and output, respectively. It is shown that there exists a relation of
the form $PP < $PE = $EP < $EE among different payoffs at the NE.
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